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Abstract—As one of the featured initiatives in smart grids,
demand response is enabling active participation of electricity
consumers in the supply/demand balancing process, thereby
enhancing the power system’s operational flexibility in a cost-
effective way. Industrial load plays an important role in demand
response because of its intense power consumption, already
existing advanced monitoring and control infrastructure, and
its strong economic incentive due to the high energy costs. As
typical industrial loads, cement plants are able to quickly adjust
their power consumption rate by switching on/off the crushers.
However, in the cement plant as well as other industrial loads,
switching on/off the loading units only achieves discrete power
changes, which restricts the load from offering valuable ancillary
services such as regulation and load following, as continuous
power changes are required for these services. In this paper,
we overcome this restriction of poor granularity by proposing
methods that enable these loads to provide regulation or load
following with the support of an on-site energy storage system.

Index Terms—Demand response, industrial load, energy stor-
age system (ESS), model predictive control, regulation, load
following.

I. INTRODUCTION

Countries and states all over the world are making efforts to
secure a sustainable energy future. To achieve this, renewable
generation resources such as wind turbines and solar panels are
being deployed more and more widely. For example, in 2015,
the U.S. saw the installation of 7.3 GW solar power capacity
which contributed 29.5 percent of all newly-installed electric
generation capacity and beat out the increase of natural gas
capacity for the first time [1]; more than 3 GW of offshore
wind power has been connected to the European grid in 2015
- twice as much as in 2014 [2]. However, the power output
from these renewable resources is intermittent and uncertain
which imposes challenges on power system operation.

The integration of renewable generation requires large
amounts of balancing resources to enhance the operational
flexibility of the grid. Traditionally, the power system relies on
generators to provide such flexibility. However, it is necessary
to seek for additional balancing resources to strengthen the
balancing capability of the grid. Meanwhile, demand response
has demonstrated potentials to enhance the power system’s
operational flexibility in a cost-effective way [3]–[6]. Demand
response can be provided by residential, commercial, or indus-
trial loads, and its benefits have been discussed in many stud-
ies, e.g. demand response provided by electric vehicles [7]–[9],
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residential areas [10]–[12], buildings [13]–[16], data centers
[17], aluminum smelters [18], [19], air separation units [20],
and steel plants [21]–[23].

Within the realm of demand response, industrial loads
have the following advantages [24]–[26]: most industrial loads
are already equipped with control, measurement, and com-
munication infrastructures which are necessary for demand
response participation; many industrial loads are able to adjust
their energy consumption profile and provide power change
in a large, fast, and accurate way; industrial loads are also
willing to increase their operational complexity in order to
participate in demand response programs, which will reduce
their electricity cost - usually a significant portion of total cost
of operations for many industrial plants. Industrial loads that
are ideal candidates for demand response include aluminum
smelting pots, furnaces, fans, freezers, pumps, mills, crushers,
etc. These industrial loads are not only participating in the
energy markets through programs like load shifting, they are
also actively providing ancillary services [14], [27], [28] such
as spinning reserve, load following, and regulation. In this
project, we study approaches to enable ancillary services
provision from industrial loads to encourage the industrial
loads to actively participate in the power system.

Among the ancillary services, regulation and load following
require a very fast response of power change, both up and
down, and are very valuable in the markets. Meanwhile, the
electricity market has critical tests for market participants to be
qualified as resources for regulation or load following. Failing
to consistently follow the setpoint instructions sent from the
power system control center may lead to penalty and even
disqualification. For example, the rules of the Midcontinent In-
dependent System Operator (MISO) state that if the mismatch
exceeds the tolerance band for 3 consecutive 5-min intervals, a
Failure to Follow Dispatch Flag is set, and the resource needs
to pay back the regulation awards plus a penalty to MISO [29],
[30]; in PJM Interconnection (PJM), the regulating resources
that have not met performance thresholds over a specified time
period will be disqualified, where the performance score takes
account of the delay, correlation, and precision scores over the
last 100 hours. The score calculation procedures can be found
in [31].

Lots of industrial loads are able to provide very fast changes
in power consumption in both directions. For example, the
crushers or mills in the cement industry can be switched on and
off very rapidly [32]. However, most of these industrial loads
can only provide power changes in a discrete manner, e.g. the
power change is several MWs at a time. This poor granularity
restricts them from offering regulation or load following,
which requires a continuous change of power. Therefore, these
demand response resources with fast power changing ability
have not been utilized to their fullest potential.
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To overcome the restriction of poor granularity and deal
with the discreteness in its power change, we proposed a
coordination framework in which the industrial load provides
regulation or load following with the support from an on-site
energy storage system (ESS) [33]: the industrial load provides
a large but discrete power change which constitutes the main
contribution of the service, while the energy storage provides
a fine and continuous power change which ensures that the
combination of the two accurately follows the desired power
signal. These two parts are coordinated by a model predictive
control (MPC) approach which utilizes the prediction of the
upcoming signals from the power system. As demonstrated in
[33], the combination of the industrial loads and energy storage
is able to accurately follow the regulation or load following
command in a very wide range. That previous work only
focuses on the hourly operation and assumes the regulation
capacity is given. In this paper, we extend our previous work
to study the day-ahead scheduling and provide the tool to
determine the optimal quantity of regulation provision for each
hour.

The key contributions of this work are the proposed methods
for enabling the loads to fully achieve their potentials as
demand response resources with the support of an on-site
energy storage system. We demonstrate through case studies
that the cooperation of the industrial machines and the energy
storage system can produce a combined contribution that is
greater than the sum of their separate effects. The remainder
of the paper is organized as follows. The considered problem
is introduced in Section II. We will then describe in Section III
how the regulation can be provided by the industrial machines
with the support of an energy storage system. The real-time
coordination method is based on an MPC for hourly operation.
Next, we investigate in Section III how to optimally decide
its regulation contributions for the next day, where the day-
ahead optimal scheduling method is presented. A case study
is discussed in Section V to demonstrate the effectiveness of
the proposed approaches. Section VI concludes the paper.

II. PROBLEM STATEMENT

A variety of industrial loads can be switched on and off very
rapidly, which enables them to change their power consump-
tion rate fast and frequently, e.g. the crushers in the cement
crushing industry [32] and the mills in the thermo-mechanical
pulp and paper industry [34]. In this paper, we investigate
and provide methods to utilize these industrial loads for the
provision of regulation service. Note that the proposed method
can also be employed to enable load following.

PJM, the largest competitive wholesale electricity market
in the U.S., distinguishes between two different regulation
signals: RegD and RegA. RegD is designed for fast react-
ing resources and we assume that the manufacturing plant
participates as such fast acting resource, which is true for
industrial demand response resources like aluminum smelters.
The regulation signal is in per unit value, i.e. it ranges between
-1.0 and 1.0. Suppose the load has committed to provide R
MW regulation with a baseline power of B MW, then the
regulation command is the RegD signal scaled by R plus B,
i.e. the targeted power consumption rate ranges between B−R
MW and B + R MW. Hence, the problem to be solved is

twofold. First, given a particular B and R, how can the manu-
facturing plant ensure that it closely follows the given signal?
Second, the plant needs to determine the optimal B and R
values, such that it can fulfill its regulation commitment at any
point in time while not negatively impacting its production.
Though previous work has demonstrated the advancement of
short-term forecasting in power systems [35]–[37], it is still
impossible to accurately forecast the regulation signal over
several minutes. However, forecasting its trend with reasonable
accuracy over a horizon less than 1 minute is possible, e.g.
by using autoregressive-moving-average (ARMA) models. As
demonstrated later, this prediction is good enough to coordi-
nate the industrial loads and the energy storage, where the
energy storage provides some buffer for prediction errors.

As mentioned, the loading units (machines) are switched
on/off to follow the regulation command with the support of
an on-site energy storage system. For simplicity, we assume
that there are M machines which can be switched on and off
rapidly, and each machine has the same power consumption
rate of ρ MW. Note that in practice the power consumption
rates for different machines may not be the same, yet the
proposed method can be easily extended to consider this
deviation from our assumption. It has been demonstrated that
stand-alone storage has significant potentials to support the
power system operation [38], [39], whereas in our method the
storage helps the industrial load to overcome the restriction of
poor granularity. We assume that the storage has a maximum
energy capacity of Es MWh and its charging power is bounded
by −Ps and Ps MW. To simplify the problem, we further
assume that there is no energy loss associated with the
charging and discharging processes. Note that the energy loss
can be considered easily by extending the formulations.

In most electricity markets, the market participants bid for
their market share for each hour in the following day, and the
market share together with the final market price are settled af-
ter the bidding process is completed. Hence, in each operating
hour, the regulation capacity R and the energy baseline B are
pre-determined by the market. The demand response provider
is obliged to follow the resulting regulation signal, otherwise,
it will be penalized according to market rules. This leads to
the proposed Real-time MPC Coordination of the industrial
plant, as presented in Section III. With the settled R and B, the
industrial load and the energy storage are coordinated by the
MPC method to optimally follow the regulation command with
consideration of the machine switching cost, the regulation
command violation, and the storage energy level.

Before the actual demand response participation, the in-
dustrial plant needs to determine the optimal R and B for
each operating hour to maximize its daily revenue. Since
market bidding is not the focus in this paper, we assume the
energy price and regulation price are known. This leads to the
proposed Day-ahead Optimal Scheduling of the industrial
plant, in which R and B are determined for every hour of
the next day, as presented in Section IV. The Day-ahead
Optimal Scheduling aims to decide the R and B for each
hour in the next day, while the Real-time MPC Coordination
aims to control the devices to optimally follow the regulation
commands at real-time for each operating hour with a pre-
settled R and B. The scheduling approach takes into account
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the revenues from market participation, the cost of regulation
provision, as well as the coupling of the crushing process
with other processing stages within the industrial plant. Note
that the proposed optimization model can be extended to
consider the market bidding problem, e.g. through stochastic
programming with possible price curves as scenarios [19].

As just mentioned, the coupling between processes needs to
be considered in scheduling industrial loads. Usually, there are
multiple processing stages in an industrial plant, and succes-
sive stages interact with each other through the generation and
consumption of intermediate products. Taking the cement plant
in Fig. 1 as an example, the crushing machines belong to the
first stage which breaks the raw material (e.g. limestone, clay)
into finer particles. In the second stage, the kiln heats up these
finer particles to a higher temperature for further processing
in its following stages. In other words, the crushing machines
generate the finer particles and the kiln consumes these finer
particles, therefore these two stages are coupled through the
intermediate product. In scheduling the cement plant, we want
to keep the kiln operating at a constant consumption rate,
because it is very expensive to turn on/off the kiln due to its
large thermal capacity. As the intermediate product generation
rate is proportional to the energy consumption rate of the
crushing machines, i.e. the energy baseline B, we need to
wisely decide the values of B for each hour in the operating
day so that the following processing stages are not interrupted.

III. REAL-TIME MPC COORDINATION

The real-time coordination framework for hourly operation
is illustrated in Fig. 2. At each step t, based on historical
regulation commands, the predictor outputs the regulation
prediction for the next L steps; then the optimal controller
optimizes over the number of active machines xi and the
storage charging power yi for each time step i = t, · · · , t+L
in the MPC horizon, based on the regulation prediction and
previous operation records of the machines; after obtaining the
optimization results, only the control decision for the current
time step t is applied to the industrial load and the energy
storage. Then, the horizon is shifted forward by one time step
and the optimization is carried out anew.

A. Prediction
The prediction of the regulation signal is achieved using

an ARMA model. We have trained different ARMA models
by the Python Time Series Analysis package. For different
training data sets [40], the ARMA(2,1) model achieved the
best performance, in terms of the Akaike information criterion
(AIC) scores. The ARMA (2,1) model is described by:

ωt = φ1ωt−1 + φ2ωt−2 + θ1εt−1 + εt

Cement Crushers Stock Inventory Rotary Kiln

Fig. 1: Cement plant illustration.
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Fig. 2: MPC coordination framework.

in which ωt stands for the regulation signal and εt stands
for the white noise. The auto-regressive parameters φ1, φ2
and moving-average parameters θ1 are trained and obtained.
The regulation prediction mean squared errors by ARMA(2,1)
for different prediction horizons are plotted in Fig. 3 with
comparison to the Persistence Prediction and the Mean Pre-
diction approach. The Persistence Prediction uses the latest
available observation as prediction and the Mean Prediction
uses the average from all available observations as prediction.
According to Fig. 3, the ARMA(2,1) model results in a good
performance up to horizons of around 1 minute.

B. Optimal Control
The objective of the optimal control is to provide high

quality regulation service at low cost. The decision variables
for the optimal control are the number of active machines and
the charging power for the storage. The regulation capacity
and the regulation baseline, denoted as R and B (MW) respec-
tively, are determined in advance by the schedule optimization
approach presented in Section IV. Note, as the regulation
signal is assumed to be well balanced, i.e. its integral over
time is zero, which is the case for RegD signal, the average
power consumption of the industrial machines is B MW. This
indicates that the throughput from these crushing machines,
which is proportional to the energy (MWh) it consumes, is
decided by baseline B. The formulations for the optimal
control are stated as follows.

1) Objective: We penalize the regulation violation vi, the
amount of switch actions si, and the deviation d of the final
storage energy level from the targeted level, as in:

minimize
∑
i∈L

(αvi + βsi) + γd (1)

in which L = {0, 1, ..., L} is the set of time steps in the current
MPC horizon and α, β, γ ≥ 0 are the penalty parameters.
Different values of the penalty parameters indicate different
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preferences for the regulation provision. Details of the impact
of these parameters are discussed in the case study.

2) Regulation Violation: Within the MPC horizon at time t,
the regulation signal prediction for step i is denoted by ω̂t+i.
According to the regulation prediction, the regulation violation
vt+i at the i-th step is defined as:

vt+i ≥ |B +Rω̂t+i − ρxt+i − yt+i| ∀i ∈ L (2)

in which the first two terms on the right side correspond to the
regulation command and the last two terms correspond to the
plant power consumption rate; ρ is the power consumption
rate of the machine, xt+i represents the number of active
machine, and yt+i denotes the charging power of the storage
system. Since we penalize vt+i in the objective function, i.e.
α is positive, the above constraint can be formulated as two
linear inequality constraints, i.e.

vt+i ≥ B +Rω̂t+i − ρxt+i − yt+i

vt+i ≥ −B −Rω̂t+i + ρxt+i + yt+i

Similar formulations apply to the following two constraints.
3) Machine Switching: Too much switching of the ma-

chines potentially increases degradation and may even damage
the machines; that is why we penalize the amount of switch
actions in the objective function. The amount of switch actions
st+i at the i-th step is given by:

si ≥ |xt+i − xt+i−1| ∀i ∈ L (3)

in which the right side represents the change in the number
of active machines between time steps.

4) Storage Level Deviation: Another objective is to control
the final energy level in the storage by the end of each MPC
horizon. Otherwise, if the energy level is near to its full
capacity, then there is little room for the storage to contribute
to the provision of regulation for the following MPC horizons.
This deviation is defined as

d ≥ |et+L − e| (4)

in which e is the targeted storage level. We usually set e equal
to 50% of its energy capacity.

5) Storage Energy Balance: The energy balance for the
storage describes the dynamic relationship between stored
energy and its charging power, as given by:

et+i − et+i−1 = yt+iδ ∀i ∈ L (5)

where δ is the length of one time step. In addition, the energy
in the storage is constrained by the storage capacity.

6) Switching Limitation: In practice, the industrial ma-
chines cannot be switched on/off without any limitation as the
machines could get damaged by too much switching. Hence,
we restrict the number of switch actions to be no more than
s̄ for every successive K steps (typically, K > L) for each
MPC step t and each time i in the MPC horizon, as given by:

t−1∑
j=t+i−K

s̃j +

t+i∑
j=t

sj ≤ s̄ ∀i ∈ L (6)

The first term corresponds to the summation of switch actions
that already took place before t, and the second term stands
for the possible number of switch actions that may take place

from t to the i-th step t + i. Note that the above constraint
applies to each step i within the MPC time horizon, as we
require the switching to not violate the bound on the number of
switchings for every successive K steps. Consider an example
where L is 20 steps and K corresponds to 100 steps, if there
are already s̄ times of switching between t-90 and t, then for
the MPC horizon starting at t, its first 10 steps cannot allow
for any switching. Other constraints on switching limitation
can be considered in a similar way, e.g. the requirement for
the machines to consume a certain minimum amount of energy
for a specific number of successive time steps.

7) Variable Range: The decision variables can take values
within the following bounds:

xt+i ∈ {0, 1, ...,M} and − Ps ≤ yt+i ≤ Ps ∀i ∈ L (7)

in which xt+i is an integer variable while yt+i is continuous.
To sum up, the MPC recedes forward and at each time step t,

it first predicts the upcoming regulation signals, then optimizes
(1) subject to constraints (2)-(7), but only applies the optimal
decisions at time step t. The resulting optimization problem
is a mixed-integer linear programming (MIP) problem, which
can be solved by CPLEX very quickly as the problem size
is small. The complexity of solving the MIP problem grows
exponentially with the number of integer variables. The integer
variables on the other hand, which model the switch statuses
of the machines, linearly depends on the number of machines
in the plant. In practice, the number of machines in a plant is
usually quite small.

Note that the above constraints (2) and (3) are based
on our assumption that each machine has the same power
consumption rate ρ and we use one variable x to denote the
number of active machines. In case the power consumption
rates of different machines are not the same, we can extend
the above constraints and model the on/off status for each
individual machine by using a vector of binary variables. For
example, let M be the set of machines and xmt be a binary
variable representing the on/off status of machine m with
m ∈ M at time t, then constraints (2) and (3) need to be
extended to

vt+i ≥ |B +Rω̂t+i −
∑
m∈M

ρmxmt+i − yt+i| ∀i ∈ L

where ρm is the power consumption rate for machine m, and

si ≥
∑
m∈M

|xmt+i − xmt+i−1| ∀i ∈ L

respectively.

IV. DAY-AHEAD OPTIMAL SCHEDULING

In Section III, the power baseline B and regulation capacity
R are pre-specified for the hourly operation. Here, we now
consider the day-ahead scheduling and the goal is to optimally
determine the hourly B and R for the load. Specifically for a
cement plant, our scheduling objective is to maximize its daily
profit which consists of the revenue from industrial production
and the revenue from regulation provision minus the cost of
energy consumption and the cost of providing regulation. We
also need to ensure that the kiln keeps on running at a constant
rate continuously and prevent it from turning off, as restarting
the kiln is very expensive.



5

A. Constraints

1) Power Baseline: The power baseline B is the base
for regulation provision, which equals the load’s power con-
sumption rate if no regulation is provided, i.e. without charg-
ing/discharging of energy storage nor switching of machines.
Hence, B equals the sum of power from a subset of available
machines. Consequently, we have a limited choice of values
for B. Note that when the load is providing regulation, B is
very close to the average power consumption rate, because the
regulation signal is assumed to be well balanced (e.g. RegD
signal) and therefore its hourly integral is almost zero.

The baseline B is determined by how many crushers are
turned on; in case that the machines are not identical with
each other, it is also decided by which machines are turned
on. For a fixed number of machines, the combinations of their
on/off statuses are limited, hence the choices of B are limited.

For each such choice, we term the corresponding machines’
statuses as profile p ∈ P, where P is the set of all possible
profiles, and denote the baseline power as Bp MW. Note
that Bp and P can be obtained as parameters once we know
the plant’s configuration. We then use binary variable zp,h to
denote whether the plant chooses a baseline with profile p,
where zp,h ∈ {0, 1} and h ∈ H with H as the set of hours
in the scheduling horizon; this is equivalent to using a binary
vector of size m to indicate the on/off statuses of m machines,
as there is a bijective mapping between the profile p and the
binary vector. Since the load chooses only one baseline profile
for each hour, we have the following constraint regarding the
choice of baseline: ∑

p∈P
zp,h = 1 ∀h ∈ H (8)

2) Regulation Capacity: Unlike the power baseline, the
regulation capacity R is continuous; meanwhile, the maxi-
mum capacity of R depends on the baseline power B, as
B determines the available machines for switching. We use
continuous variable rp,h to denote the regulation capacity
the load provides given that machine switching profile p is
chosen during hour h; for each hour h, only the chosen power
baseline’s correspondent rp,h is nonzero. Since the energy
storage itself is able to provide a regulation of Ps MW, here
we consider the case when rp,h is greater than Ps, i.e., we
switch machines to provide a larger amount of regulation than
the possible amount by merely using the storage. We have the
following constraint on the bounds for rp,h

Rlo
p zp,h ≤ rp,h ≤ Rup

p zp,h ∀p ∈ P (9)

where Rlo
p and Rup

p are bounds associated with baseline profile
p. Note that if a baseline profile is not chosen, then its
correspondent regulation rp,h is zero because zp,h is zero.

3) Inventory Stock: Since the production rate of the ma-
chines is proportional to their energy consumption rate, the
choice of p impacts the intermediate product generation rate.
We assume that the following stage consumes the intermediate
product at a constant rate τ , and any interruption to the next
stage should be avoided as this could be costly. Therefore,
there always needs to be enough intermediate product in stock.
We use variable qh to represent the quantity of intermediate
product in the inventory after hour h. With the assumption that

the production rate is proportional to the power consumption
rate, unit conversion can be done and we denote qh with
the unit of MWh for simplicity; similarly, the consumption
rate τ of the next stage is also in the unit of MW, and the
intermediate production generation rate is Bp MW. This leads
to the following constraint regarding the dynamic balance for
the inventory stock:

qh +
∑
p∈P

Bpzp,h − τ = qh+1 (10)

The above constraint should always hold in order to keep the
next stage running. Besides, the inventory stock is subject to
the following bounds:

Qlo ≤ qh ≤ Qup (11)

where the parameters Qlo and Qup (also converted to the unit
of MWh) correspond to the minimum and maximum amount
of intermediate stock allowed in the inventory.

4) Regulation Cost: The provision of regulation does not
come for free as it leads to more switching of the machines and
therefore increased equipment degradation. Hence, we need to
quantify the hourly regulation cost before optimizing the day-
ahead scheduling. In other words, we want to choose the
optimal regulation capacity R for each hour, and before that,
we need to know the cost corresponding to each possible R. As
discussed in Section III, the regulation provision cost depends
on the actual AGC signal trace. However, the relationship
between the cost and the AGC signal is nonlinear and complex;
besides, the AGC signal itself is uncertain and impossible to
predict over a long interval (e.g. more than 5 minutes). To
simplify the problem and focus on the day-ahead operation of
the industrial plant, we approximate the hourly regulation cost
by only considering the cost associated with the switching of
machines.

In order to quantify the cost associated with the machine
switching, we need to know the switching amount for each
hour, but that amount is unknown before the actual hourly
operation. However, since the AGC signal is approximately
normally distributed and its trace is similar from hour to
hour, the average hourly switching amount from historical
operations can serve as an approximation of future hourly
regulation cost in our day-ahead scheduling. As the average
hourly switching also depends on the values of B and R,
we run numerical simulations with various settings of R
and B using historical AGC traces (published by PJM) and
record the number of switching for these cases. This gives
an approximate average number of switching for each B and
R. We then use that average as the approximated switching
cost (as a function of B and R) in the day-ahead scheduling
problem to determine the optimal B and R for each operating
hour. From simulations, we observe that the switching cost
linearly depends on R for a given B, as seen in Fig. 10. Hence,
we model the switching cost to be C0

p+C1
pR for a given power

baseline profile p; in other words, we assume the switching
cost increases linearly with regulation capacity R, while the
coefficients C0

p and C1
p are determined by the power baseline.

The coefficients C0
p and C1

p can be obtained by regression of
the historical operation records, which is presented in detail
in Section V-C.



6

To sum up, in consideration of all possible baselines, the
hourly switching cost is expressed as follows:

Ch =
∑
p∈P

(C0
pzp,h + C1

prp,h) (12)

Note that rp,h is zero when zp,h is zero according to Eq. (9).
The coefficients C0

p and C1
p can take into account the monetary

cost of the switch actions, hence the hourly switching cost Ch

is in the unit of $.

B. Objective Function
Suppose the hourly energy price, regulation price, and

industrial product market price are known, then the regulation
revenue is proportional to R, and both the energy cost and
industrial product revenue are proportional to B. We use
λR,h to denote the hourly regulation price, and use λE,h to
denote the hourly net energy profit price which equals the unit
revenue in industrial production minus the unit cost in energy
consumption. Since we assume the kiln operates at a constant
speed and hence the final product yield does not change, we
only maximize the net revenue from the crushing stage. Then
our final optimization problem is:

maximize
zp,h, rp,h

∑
h∈H

(λE,h

∑
p∈P

Bpzp,h + λR,h

∑
p∈P

rp,h − Ch)

subject to (8)− (12)

which is a mixed-integer linear programming problem, where
the number of integer variables linearly depends on the number
of machines in the plant, as these variables indicate the statuses
of the crushers. And again we use CPLEX to solve the
problem.

V. CASE STUDY

A. Industrial Plant Parameters and ESS Cost Estimation
For the case study, we consider a cement plant with M = 4

crushing machines. These machines can be switched on and
off rapidly. The power consumption rate of each machine is
either ρ = 2 MW (when it is on) or zero (when it is off). The
plant has an on-site energy storage system whose maximum
charging/discharging power is Ps = 3 MW and its energy
capacity is Es = 9 MWh. The crushing machines constitute
the first stage of the cement production process, followed by
a cement kiln burner which heats the intermediate products to
a certain temperature. The kiln burner cannot be interrupted
and consumes the intermediate product at a constant rate.
The constant consumption rate is equivalent to τ = 4 MW.
The intermediate product between the crushing and burning is
stored in an inventory, which has a maximum capacity that is
equivalent to Qup = 20 MWh and its initial stock is 10 MWh.

In order to estimate the benefit and cost from providing
regulation by installing an ESS for such a cement plant,
we use $1,000/kW to estimate the cost of a Li-ion energy
storage system whose capacity (MWh) / power (MW) ratio
is 3 [41], [42]. Hence, a 3 MW (9 MWh) Li-ion ESS
roughly costs $3M. The cement industry has been one of the
least profitable businesses, whose net profit margin is only
2.03% [43]. The traditional scheduling strategy, in such a
capital-intensive industry, is to produce as much as possible

by running all machines at their full capacities, in order to
fully utilize the invested equipment and resources. With the
falling prices of the cement products, it could be profitable to
reduce the production rate, and utilize its capabilities in power
response to earn revenues in the electricity markets. For the
above cement plant, its nominal power consumption rate is 8
MW and its nominal production rate is 480 tons of cement
per hour [44].

We will compare three scheduling options and focus on its
net cost in the electricity markets per ton of cement produced.
The cement plant is assumed to operate 24 hours a day and 7
days a week. The market prices are taken from a typical day
(Jan 30, 2017) in MISO, where the average prices over the
day are $29.87/MWh for energy, $11.36/MW for regulation
capacity, $0.72/MW for regulation mileage, and $2.45/MW
for spinning reserve capacity. In option (1), the plant operates
at its full capacity with a power consumption rate of 8 MW
and does not provide any ancillary service. Its daily cement
throughput is 11520 tons and its daily energy cost is $5735.04.
In option (2), the plant operates at its full capacity and also
provides 8 MW spinning reserve. Since the spinning reserve
dispatch rate is very rare (less than 0.5% according to [30]),
we assume there is no actual deployment. Its daily cement
throughput is 11520 tons and its daily net cost is $5264.64
(energy $5735.04, spinning reserve $470.40) in the electricity
markets. In option (3), the plant operates at its half capacity
and provides 7 MW regulation with the help of the ESS, which
corresponds to the simulation discussed later and shown in Fig.
6. In calculating the regulation mileage payment, we assume
a mild mileage as 20 p.u. per hour, which corresponds to an
AGC signal as shown in Fig. 4. Its daily cement throughput is
5760 tons and its daily net cost is $-1460.16 (energy $2867.52,
regulation capacity $1908.48, regulation mileage $2419.20).
Hence, the net cost in the electricity market per ton of cement
processed ($/ton) are 0.50, 0.46, and -0.25, respectively.

By comparing option (2) and (3), we observe that the
saving increase in the electricity markets is $0.71/ton on the
typical day, if providing regulation instead of spinning reserve.
Therefore, the investment of the 3 MW ESS can be covered by
producing around 4.23 millions (3M/0.71) of tons of cement,
with the assumption that the prices on the typical day can
approximate the average prices. In other words, if we choose
option (3) and let the plant process 240 tons of cement per
hour, the ESS can be covered in two years. Of course, the
analysis here is not comprehensive enough and it is only meant
to illustrate the idea that lowering down production rate and
providing regulation could be profitable for the cement plant.

B. Simulations of Real-time MPC Coordination

The simulations of real-time operations are studied to
demonstrate the benefits of the proposed MPC coordination
approach. Since the market cycle is an hour, the simulations
are performed hourly. As R and B are given values in the
hourly operation, here we consider the cement plant providing
R = 5 MW regulation at a baseline of B = 2 MW; as seen
later in Section V-D, this setting of R and B corresponds
to the scheduling result in Fig. 11, e.g. hour 8 and hour 20.
The regulation command ranges between -3 MW and 7 MW.
Note that this range of the regulation command is 10 MW,
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which is much higher than that of the energy storage (6 MW).
The 20 minutes regulation signal for the simulations is plotted
in Fig 4, together with the ARMA(2,1) prediction at a few
distinct time instances. The length of the time step is δ = 2
seconds, and the prediction horizon is L = 15 steps. The
penalties α, β, γ in Section III are set to 10, the targeted final
energy is ē = 0.5 MWh, and we require the maximum number
of switch actions to be s̄ = 10 times for every successive 5
minutes, i.e. K = 150 steps.

The simulations of hourly operation, i.e. the real-time fol-
lowing of the AGC signal, the switch actions, and the energy
storage operation, are plotted in Fig. 5. The dashed lines in
the middle plot are the bounds for the charging/discharging
power of the storage. According to the simulation, the integral
of regulation violation over the hour is 0 MWh, i.e. there is no
violation at all, the total number of switch actions is 15, and
the storage energy level at the end of the hour is 0.64 MWh, i.e
the energy deviation is 0.14 MWh. These results demonstrate
that the coordination method proposed for real-time operation
is able to utilize the advantages of both the industrial loads
and the energy storage, and provides high-quality regulation
service to support the power system operation.

We also study the case of providing an even larger amount
of regulation. We consider the cement providing R = 7 MW
regulation at a baseline of B = 4 MW, which corresponds to
the scheduling result in Fig. 12, e.g. from hour 4 to hour
22. The simulation results are displayed in Fig. 6 and all
the configurations are exactly the same as the simulation in
Fig. 5. Over the hour, there is only a slight violation - the
integral of regulation violation over the hour is 0.001 MWh,
the total number of switch actions is 27, and the storage energy
level at the end of the hour is 0.60 MWh, i.e the energy
deviation is 0.10 MWh. Compared with Fig. 5, the machines
are switched more frequently and there is some violation
of regulation following, which is the cost of increasing the
regulation capacity.

The sensitivity with respect to changes in parameter settings
is investigated by simulations with different penalty values.
If we impose a stronger switch limitation constraint, e.g.
requiring the maximum number of switches to be 3 for
every successive 5 minutes, then the switching frequency will
decrease, as demonstrated by the simulation results in Fig. 7.
The total number of switches decreases to 21 times, but the
regulation violation increases to 0.25 MWh. If we also increase
the penalty on switch actions β, the total number of switch
actions is expected to further decrease. For example, increasing
β to 100 while keeping all other parameters the same as Fig. 7
yields the simulation results in Fig. 8, in which the total

Fig. 4: Regulation signal (AGC) over 20 minutes and its prediction.

2
0
2
4
6
8

10

re
gu

la
tio

n 
[M

W
]

agc command
plant power

2
0
2
4
6
8

de
vi

ce
s 

[M
W

]

cement power
storage power

0 5 10 15 20 25 30 35 40 45 50 55 60
Minute

3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4

st
or

ag
e 

[M
W

h] storage level

Fig. 5: Hourly real-time simulations with R = 5 MW, B = 2 MW.
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Fig. 6: Hourly real-time simulations with R = 7 MW, B = 4 MW.

number of switches further decreases to 19 times, however,
there is even more regulation violation, i.e. 0.27 MWh.

In practice, we suggest that the plant operators choose their
own penalties according to their preferences. For example, in
an electricity market where the regulation quality is highly val-
ued, a higher regulation violation penalty α is recommended;
meanwhile, if switching the machines is very expensive, then
the operator should use a large switch action penalty β.

C. Quantifying Hourly Regulation Cost
In order to optimize the scheduling for the day-ahead

operation as in Section IV, we need to quantify the hourly
cost of regulation provision. As discussed in Section IV-A4,
we approximate the hourly regulation cost by using the average
hourly switching quantities from the records of historical
operation.

To obtain the historical regulation cost, we simulate the
MPC coordination for each hour over three months by using
the historical AGC signal published by PJM. All the three
penalties α, β, γ are still chosen as 10. Simulations with
different choices of baseline power B and varying regulation
capacity R are studied. For the considered plant, we have three
baseline powers to choose from, i.e. 2, 4, or 6 MW, leaving
at least one machine for switching. The regulation cost given
different pairs of (R,B) are obtained for each hour in the
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Fig. 7: Stronger switching limitation with R = 7 MW, B = 4 MW.

2
0
2
4
6
8

10

re
gu

la
tio

n 
[M

W
]

agc command
plant power

2
0
2
4
6
8

de
vi

ce
s 

[M
W

]

cement power
storage power

0 5 10 15 20 25 30 35 40 45 50 55 60
Minute

3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4

st
or

ag
e 

[M
W

h] storage level

Fig. 8: Increased penalty on switching with R = 7 MW, B = 4 MW.

historical data. We present the trace of each regulation cost
component over two days in Fig 9(a), 9(b), and 9(c); we only
present the plots with B = 4 MW here, while the observations
are similar when B is 2 or 6 MW. From these plots, we observe
that: (1) a larger regulation capacity generally leads to a larger
amount of switch actions; (2) the regulation violation is zero
for most of the hours, and when it is not zero, the violation
increases with the regulation capacity; (3) the energy storage
deviation fluctuates around zero as it depends on the integral
of the hourly AGC signal. The hourly energy consumption by
the machines over these two days is plotted in Fig. 9(d), which
demonstrates that the hourly energy consumption rate is very
close to the baseline power.

In the day-ahead scheduling, we only consider the switching
cost. With the simulated hourly switching cost over these
three months, we can obtain the average amount of switch
actions C̄B,R for any given pair of R and B. This average
switch action is displayed in Fig 10, where all three possible
baseline power are considered. For each baseline power B, we
apply linear regression to fit the output C (response/dependent
variable) to the input R (explanatory/independent variable).
The fitted relationships are also plotted as dashed lines in
Fig 10. These fitted linear relationships which map R to C
under a chosen B provide the regulation cost coefficients C0
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Fig. 9: Hourly simulation results over 48 hours.
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Fig. 10: Average hourly switch MW and its linear fitting.

and C1
b for the day-ahead scheduling.

D. Simulations of Day-ahead Optimal Scheduling

Here we apply the optimal scheduling proposed in Section
IV to the industrial plant. The hourly electricity energy price
and regulation price are taken from historical records from
MISO. The profit from cement production is assumed to be
$30/MWh, i.e., for every 1 MWh energy consumption, the
machines generate products worth of $30. The coefficients
of hourly regulation cost, C0

b and C1
b , are taken from the

regression result in Fig. 10, with the assumption that the
monetary cost of switching is $0.5/MW. All these scheduling
optimizations can be solved by CPLEX within minutes as the
problem size is small. In practice, its computation does not
need to be very fast as the problem is intended for day-ahead
scheduling which only needs to be solved a few times every
day. The day-ahead scheduling is presented in Fig. 11. From
the result we see that when the energy price is lower, the
baseline power is higher, i.e. the cement plant takes advantage
of the lower energy price and consumes more energy by
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Fig. 11: Day-ahead scheduling result.
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Fig. 12: Day-ahead scheduling with higher regulation price.

speeding up production; while when the energy price is higher,
the baseline power is lower and the cement plant consumes less
energy. We also observe that the regulation capacity increases
when the regulation price is higher, e.g. around hour 8 and
hour 18. If we manually increase the regulation price, e.g.
artificially multiply the regulation price by 8, the industrial
plant will concentrate on the regulation provision, as in Fig. 12.
During most of the hours, the baseline power is 4 MW, which
guarantees the largest regulation availability.

VI. CONCLUSION

The key contribution of this work is the proposed ap-
proaches for providing the most valuable ancillary services
such as regulation and load following by the combination of
industrial loads, which can adjust their power consumption
only in large discrete steps, and an on-site energy storage
device, which provides the more granular power adjustments.
Both real-time and day-ahead operations are considered: an
MPC approach determines the hourly operation and an optimal
scheduling approach handles the daily operation.

Given these proposed approaches, the loads are enabled with
more options in supporting the power system operation. The
loads are able to overcome the restriction of poor granularity

and provide regulation or load following ancillary services.
The daily scheduling method provides a tool for plant op-
erators to optimally arrange their production activities with
demand response provision; it also helps plant operators to
better understand how much profit can be earned from demand
response participation, which can encourage more industrial
loads to actively contribute to power system operation. Note
that the approaches proposed in this paper apply to a variety
of loads, e.g. cement crushing, paper milling, and can enable
both load following and regulation service; the proposed
framework can also help coordinate the industrial loads with
other power system components such as commercial buildings,
electric vehicles, etc.

For future work, it is necessary to extend the proposed
scheduling method to develop a bidding tool that considers the
uncertainty of market prices; it is also crucial to address some
practical concerns such as the charging loss in the storage.
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